Chest Radiography Interpretation: Reading Chest Films

Lisa Chen, M.D.
Assistant Clinical Professor
Pulmonary and Critical Care Division
Department of Medicine
San Francisco General Hospital

Michael Gotway, MD
Associate Clinical Professor, Radiology
University of California, San Francisco
Approach to the CXR:
Technical Aspects

- Inspiratory effort
 - 9-10 posterior ribs
- Penetration
 - thoracic intervertebral disc space just visible
- Positioning/rotation
 - medial clavicle heads equidistant to spinous process
Low Lung Volumes
What to Evaluate

- Lungs
- Pleural surfaces
- Cardiomedialstinal contours
- Bones and soft tissues
- Abdomen
Where to Look

- Apices
- Retrocardiac areas (left and right)
- Below diaphragm
Apical TB
Normal Anatomy: Frontal CXR

- Heart
- Aorta
- Pulmonary arteries
- Airways
- Diaphragm/costophrenic sulci
- Junction lines
Normal Anatomy: Lateral

- Heart
- Aorta
- Pulmonary arteries
- Airways
- Spine
Chest Radiography: Basic Principles

• X-ray photon fates:
 - completely absorbed in patient
 - transmitted through patient; strike film
 - scattered within patient; strike film

• X-ray absorption depends on:
 - beam energy (constant)
 - tissue density
Maximum x-ray transmission (least dense tissue)

Maximum x-ray absorption (densest tissue)

Blackest
- air
- fat
- soft tissue
- calcium
- bone
- x-ray contrast
- metal

Whitest
All cardiothoracic pathology and normal anatomy is visualized (or not) by 7 different densities. How is this accomplished? Differential x-ray absorption.
Differential X-Ray Absorption

- A structure is rendered visible on a radiograph by the juxtaposition of two different densities
Silhouetted Sign

- Loss of the expected interface normally created by juxtaposition of two structures of different density
- No boundary can be seen between two structures of similar density
Right Lower Lobe Pneumonia
Differential X-Ray Absorption

- The absence of a normal interface may indicate disease;
- The presence of an unexpected interface may also indicate disease;
- The presence of interfaces can be used to localize abnormalities.
Chest Radiographic Patterns of Disease

- Air space opacity
- Interstitial opacity
- Nodules and masses
- Lymphadenopathy
- Cysts and cavities
- Lung volumes
- Pleural diseases
Chest Radiographic Patterns of Disease

- Cardiomedial contour abnormalities
- Bone and soft tissue abnormalities
- Below the diaphragm: abdominal and retroperitoneal disease
Air Space Opacity

- Components:
 - air bronchogram: air-filled bronchus surrounded by airless lung
 - confluent opacity extending to pleural surfaces
 - segmental distribution
Air Space Opacity: DDX

- Blood (hemorrhage)
- Pus (pneumonia)
- Water (edema)
 - hydrostatic or non-cardiogenic
- Cells (tumor)
- Protein/fat: alveolar proteinosis and lipoid pneumonia
LUL Pneumonia
Interstitial Opacity

- Hallmarks:
 - small, well-defined nodules
 - lines
 - interlobular septal thickening
 - fibrosis
 - reticulation
Interstial Opacity: Small Nodules
Interstitial Opacity: Lines
Interstitial Opacity: Lines & Reticulation
Interstitial Opacity: DDX

- Idiopathic interstitial pneumonias
- Infections (TB, viruses)
- Edema
- Hemorrhage
- Non–infectious inflammatory lesions
 - sarcoidosis
- Tumor
Nodules and Masses

- **Nodule**: any pulmonary lesion represented in a radiograph by a sharply defined, discrete, nearly circular opacity 2-30 mm in diameter
- **Mass**: larger than 3 cm
Nodules and Masses

• Qualifiers:
 - single or multiple
 - size
 - border definition
 - presence or absence of calcification
 - location
Lymphadenopathy

- Non-specific presentations:
 - mediastinal widening
 - hilar prominence
- Specific patterns:
 - particular station enlargement
Subcarinal LAN
Cysts & Cavities

• Cyst: abnormal pulmonary parenchymal space, not containing lung but filled with air and/or fluid, congenital or acquired, with a wall thickness greater than 1 mm
 ▪ epithelial lining often present
• Cavity: abnormal pulmonary parenchymal space, not containing lung but filled with air and/or fluid, caused by tissue necrosis, with a definitive wall greater than 1 mm in thickness and comprised of inflammatory and/or neoplastic elements
Cysts & Cavities

- Characterize:
 - wall thickness at thickest portion
 - inner lining
 - presence/absence of air/fluid level
 - number and location
Benign Lung Cyst: **PCP Pneumatocele**

- Uniform wall thickness
- 1 mm
- Smooth inner lining
Benign Cavities: Cryptococcus

- max wall thickness ≤4 mm
- minimally irregular inner lining
Indeterminate Cavities

- max wall thickness 5-15 mm
- mildly irregular inner lining
Malignant Cavities: Squamous Cell Ca

- max wall thickness ≥ 16 mm
- Irregular inner lining
Pleural Disease: Basic Patterns

- **Effusion**
 - angle blunting to massive
 - mobility
- **Thickening**
 - distortion, no mobility
- **Mass**
- **Air**
- **Calcification**
Pleural Effusion
Pleural Effusion